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Abstract. We propose a nonlinear extension of the Fierz–Pauli mass for the graviton through a functional of
the vielbein and an external Minkowski background. The functional generalizes the notion of the measure,
since it reduces to a cosmological constant if the external background is formally sent to zero. Such a term
and the explicit external background emerge dynamically from a bi-gravity theory, having both a massless
and a massive graviton in its spectrum, in a specific limit in which the massless mode decouples, while the
massive one couples universally to matter. We investigate the massive theory using the Stückelberg method
and providing a ’t Hooft–Feynman gauge fixing, in which the tensor, vector and scalar Stückelberg fields
decouple. We show that this model has the softest possible ultraviolet behavior that can be expected from
any generic (Lorentz-invariant) theory of massive gravity, namely that it becomes strong only at the scale

Λ3 = (m
2
gMP)

1/3.

1 Introduction and discussion

Motivated by the observed accelerated expansion of the
universe [1–3], and by the theoretical difficulties in ascrib-
ing it to a cosmological constant, there has been consider-
able activity in modifications of gravity at large scales in
the past years. For instance, an accelerated expansion can
be achieved in bi-gravity models [4], in models in which the
Lorentz symmetry is broken by the gradient of a field [5],
or in four dimensional models embedded in extra dimen-
sions, as the self-accelerating DGP branch [6–10]. Some of
these proposals have properties similar to massive grav-
ity, which is probably the most straightforward and best
studied modification of general relativity.
At the linearized level, massive gravity is obtained by

adding to the Einstein–Hilbert action a mass term for the
metric perturbations hµν = gµν −ηµν . The quadratic La-
grangian for this massive spin-two tensor field is given
by [11]

L=
1

4
M2P

{
hµν
(
h,µν +�hµν−h

α
µ,αν

− hαν,αµ+ηµνh
αβ
αβ,−ηµν�h

)

+ m2g
(
h2−hµνhµν

)}
, (1)
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where h= ηµνhµν is the trace of the metric perturbation.
There is a very stringent experimental bound on the gravi-
ton mass: mg ≤ 7×10−41GeV [12], which is close to the
inverse of the size of the observable universe. As already
observed by Fierz and Pauli (FP) [11], the relative sign
between the two mass terms is fixed uniquely by the re-
quirement of having a ghost-free Lorentz-invariant (linear)
theory.1 The massless linear theorymg = 0 can be uniquely
extended beyond quadratic order using the requirement of
general covariance leading to the familiar Einstein–Hilbert
action. But because the mass term breaks covariance, it
has no unique nonlinear extension.
Covariance can be restored by introducing additional

degrees of freedom, as for instance it is done with the
Stückelberg method [16]. Another approach is to introduce
a second metric into the theory [4, 17, 18]. When one of
the two metrics obtains a background expectation value,
a mass term for the other metric is generated. Even though
such bi-gravity theories are covariant, their completion of
the Fierz–Pauli mass term is far from unique, because one
can write down an infinite set of invariant nonlinear in-
teractions between the two metrics. It is possible to ob-
tain more uniquely defined bi-gravity theories: [18] consid-
ers a bi-gravity model described in terms of the vielbeins
(tetrads), rather than metrics. Besides Einstein–Hilbert
actions for both sectors it includes all possible cosmological
constant-like terms that can be written down using these

1 A richer structure of ghost-free mass terms is possible if one
is willing to give up Lorentz invariance [13–15].
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two vielbeins. The model [18], reviewed in Appendix A, has
two spin-two fields, one of which is massless, while the
other has a mass term of the FP form (1). Interestingly, the
model admits a limit in which the massless mode decou-
ples, while the massive one couples universally to matter.
The goal of the present paper is to investigate the re-

sulting model of massive gravity. We would like to perform
an analysis beyond the linearized level and to compare our
results with those obtained for generic massive gravity the-
ories. In particular, we want to investigate: when does this
massive gravity theory become strong? This question is
important, because it is related to the van Dam–Veltman–
Zhakarov (vDVZ) discontinuity [19, 20]. The propagator of
a massive graviton does not reduce to the massless one in
the limit of vanishing graviton mass mg→ 0. The discon-
tinuity between these propagators results in a discontinu-
ity between the perturbative interactions of the massless
and massive theories. However, precisely because the in-
teractions of massive gravity become strong, this does not
necessarily mean a discontinuity between the final non-
perturbative results [16, 21, 22]. Reference [16] showed that
the scale at which any nonlinear completion of the FPmass
term (1) becomes strong never exceeds Λ3 = (m

2
gMP)

1/3.
Any generic completion that becomes strong at a smaller
energy, can be improved by adding suitable terms to result
in a theory that becomes strong at Λ3. This procedure is
in general rather involved. Quite remarkably, we will prove
that our model becomes strong precisely at the scale Λ3,
without the need of such additional terms.
The plan of this paper is the following. Section 2 de-

scribes the model of massive gravity we want to study
in this paper using the vielbein formalism. In Sect. 3, the
Stückelberg analysis of [16] is extended to the case of the
vielbein. In general, the vielbein formulation of gravity
contains more (non-dynamical) fields than the standard
metric formulation, which are compensated by additional
gauge symmetries (the local Lorentz transformations). We
provide the (unique) transformation that fixes these ad-
ditional degrees of freedom. In Sect. 4 we determine the
quadratic action for the graviton and the Stückelberg
fields. We present a gauge choice that explicitly decouples
the scalar, vector and spin-two degrees of freedom. This
choice, which, to our knowledge, has not been provided so
far in the literature, leads to particularly simple propaga-
tors for the different polarizations. In Sect. 5 we classify the
dominant interaction terms, and we show that the scale at
which the theory becomes strong is Λ3. In that section we
also compute the tree level amplitude of the 2→ 2 scalar
scattering, because it can be considered as a typical dia-
gram used to compute the scale at which massive gravity
becomes strong. However, we show, by a specific choice of
parameters, that this interaction can be made to vanish
at this scale, while other interactions still remain strong.
These results are summarized in the concluding Sect. 6. In
Appendix A we explain how the model of massive grav-
ity studied in this paper can be obtained via a decoupling
of the bi-gravity model introduced in [18]. The subsequent
appendices are more technical. Appendix B describes some
useful properties of a special product that generalizes the
definition of the determinant, which is used to write the in-
teraction between the two initial gravitational sectors. The

Appendices C and D contain useful intermediate results for
the computation of the action in terms of the Stückelberg
fields.

2 A massive gravity theory described
in the vielbein formalism

In this section we outline the model of massive gravity that
will be studied in this paper. The action of this model is

S =
1

2
M2P

∫
d4x
{√
−gR+3m2g

〈
(e−η)2 (e+η)2

〉}
,

(2)

where we have denoted by gµν the metric associated to the
vielbein eµν . The theory describes a massive graviton and
is characterized by the Planck mass MP and the graviton
mass mg. To write the cosmological constant-like interac-
tion term we have introduced the notation

〈ABCD〉 ≡ −
1

4
εαβγδεabcdAαaBβbCγcDδd , (3)

with εabcd being the totally antisymmetric Levi-Civita ten-
sor. (Some useful properties of this product are collected in
Appendix B.) This coupling term is a generalization of the
measure, since 〈A4〉= |A|= det(A). Using these properties
it is not hard to show that the action can be rewritten as

S =
1

2
M2P

∫
d4x

{
√
−g
(
R+3m2g

)
−
1

2
m2g
(
[e]2− [e2]

)}
,

(4)

where [en] is the trace of (η−1e)n. Hence, the final term
can be interpreted as a FP mass term for the vielbein. By
formally inverting the definition,

gµν = eµmη
mneνn , (5)

we could have equivalently expressed it in terms of the
metric. However, the resulting expression would appear as
a complicated and unmotivated power series of the met-
ric. This model is obtained by considering a specific limit
of the bi-gravity theory introduced in [18] as is explained
in Appendix A. The specific choice of the action (2) is ob-
tained by imposing the reflection symmetry eµm→−eµm,
and by requiring that the Minkowski background eµν = ηµν
is a solution. Indeed, from this last requirement, we see
that the second term must factorize the (e−η)2 combina-
tion, and then the second factor simply follows from the
reflection symmetry. This specifies the action (2) uniquely
among the several interaction terms that may constructed
starting from the vielbein, the Minkowski background, and
the product (3).
However, there is still a large arbitrariness in this pro-

cedure, given by the choice of the background term. In the
action (2) we chose it to be equal to the Minkowski back-
ground ηµν in Cartesian coordinates. But, already choos-
ing it to be the Minkowski metric in spherical coordinates
would result in a different theory, since this term explicitly
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breaks covariance. We can also obtain more general solu-
tions, starting from a different background metric ebµν in
the action (2), and adding the corresponding source term
that would lead to that solution in the standard case since
the “mass term” is quadratic in eµν−ebµν , it would not af-
fect the validity of the solution. However, for definiteness,
in the remainder of this paper we will only consider the case
where the background is Minkowskian using Cartesian co-
ordinates.
The interaction term in (2) constitutes a particular

completion of the FP mass term. Inserting the expression

eµν = ηµν +fµν (6)

in the second term of (2) gives

∆S =
1

2
m2gM

2
P

{(
[f ]2− [f2]

)
+
1

2

(
[f ]3−3[f ][f2]+2[f3]

)

+
1

8

(
[f ]4−6[f ]2[f2]+3[f2]2+8[f ][f3]−6[f4]

)}
.

(7)

We stress that this expression is exact (rather than just
a perturbative expansion to fourth order). In the remain-
der of the paper we discuss the effects of the nonlinear
interactions in setting the scale at which the model be-
comes strong.

3 Stückelberg fields

We investigate the graviton interactions in the model out-
lined in the previous section. Nonlinear interactions of
massive gravity can be most easily studied through the
Stückelberg formalism, developed in [16]. To do so for our
model, we first have to formulate the Stückelberg formal-
ism in terms of the vielbein, rather than the metric (as
done in [16]). In this section we describe this computation
in some detail.
The Stückelberg formalism consists in performing a se-

ries of transformations in (2) and in promoting the param-
eters of these transformations to new fields. These fields
appear in the new action together with additional sym-
metries, so that the original action can be recovered with
a particular gauge choice. However, we can also choose al-
ternative gauges in the new action, where the nonlinear
interactions can be computed more easily.
More specifically, we start from a symmetric vielbein

perturbation fµm, and perform a general coordinate trans-
formation x→ y = y(x) combined with a local Lorentz
transformation, with L̄η−1L̄T = η. Performing these trans-
formations into the action (2) results in the replacements

d4x→ d4y =

∣∣∣∣
∂y

∂x

∣∣∣∣ d4x ,

eµa→ e
′
µa =

∂xα

∂yµ
eαbη

bcL̄ca . (8)

We note that, even though eµm is assumed to be sym-
metric, e′µm is certainly not automatically symmetric.

While the first term of (2) is invariant under these com-
bined transformations, the whole action transforms into
the Stückelberg form

S→ Sst =
1

2
M2P

∫
d4x

×

{
√
−gR+3m2g

∣∣∣∣
∂y

∂x

∣∣∣∣
〈
(e′−η)

2
(e′+η)

2
〉}
,

(9)

where e′µm has been defined in (8). Notice that (8) intro-
duces the Jacobian in front of the cosmological constant
term.
The parameters in the local Lorentz transformations

are not dynamical; therefore, they can be integrated out
using their algebraic equations of motion. Writing

L̄mn(x) = Lmp(x)
[
exp(η−1b(x))

]p
n , (10)

where bµν is antisymmetric, we expand the action (9) to
first order in b:

δbSst = 6m
2
gM

2
P

∫
d4x

∣∣∣∣
∂y

∂x

∣∣∣∣
〈
e′
3 (
e′η−1b

)
−η2e′

(
e′η−1b

)〉
.

(11)

Using the property (B.1), it is immediate to verify that the
first term in (11) vanishes, due to the antisymmetry of bmn.
Using (B.3), the remaining term rewrites

δbSst =−
1

2
m2gM

2
P

∫
d4x

∣∣∣∣
∂y

∂x

∣∣∣∣
×
{
[e′]
(
η−1e′η−1

)µν
−
(
η−1e′η−1e′η−1

)µν}
bµν ,

(12)

where we have used the notation [e′] for the trace, see be-
low (7). This contribution vanishes if e′ is symmetric, and
therefore L̄= L is an on-shell solution. This symmetry of
e′ together with the requirement that L is a local Lorentz
transformation,

(
∂x

∂y
eη−1L

)T
=
∂x

∂y
eη−1L , Lη−1LT = η , (13)

determines L uniquely in terms of the other fields.
See Appendix C for a perturbative construction of L. The
freedom in the choice of its sign is fixed by requiring that
L= lI if (∂x/∂y)e is symmetric.
Therefore, after we solve (13) for L, and we substi-

tute the solution back into (9), we are left with an action
that explicitly depends only on the three dynamical fields
fµν , aµ, and φ. The latter two fields are obtained by decom-
posing

yµ(x) = xµ+aµ(x)+∂µφ(x) , (14)

into the spin-zero, φ, and spin-one, aµ, polarizations of the
massive graviton (this decomposition introduces an addi-
tional U(1) gauge symmetry in the theory). These fields are
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the starting point for the Stückelberg analysis of the non-
linear interactions performed in the next sections.
To summarize the Stückelberg formalism we have em-

ployed in this section: in general, there are more degrees
of freedom in the vielbein than in the metric, which are
compensated by the local Lorentz transformations. This
means that in the Stückelberg description additional fields
are introduced for both the general coordinate transform-
ations and the local Lorentz transformation. But contrary
to the Stückelberg fields associated with the general coor-
dinate transformations, the ones of the local Lorentz trans-
formations are always auxiliary (i.e. non-dynamical) fields.
When we enforce their field equations, we ensure that the
composite vielbein e′, defined in (8), remains symmetric
also after the Stückelberg fields aµ and φ have been intro-
duced. Hence the number of physical degrees of freedom in
the vielbein formulation is the same as in the metric formu-
lation discussed in [16].

4 Graviton and Stückelberg propagators

The aim of this section is to compute the propagators
of the massive gravity theory defined in Sect. 2 using the
Stückelberg field decomposition discussed in the previous
section. As usual the propagators can be read off from the
quadratic action in the perturbations. However, we will
encounter a few complications: first of all, the scalar φ ob-
tains a regular kinetic term only after a Weyl rescaling
of the graviton field [16]. A second difficulty is that, be-
fore inverting the kinetic operator, we need to fix the gen-
eral coordinate covariance and the additional U(1) gauge
symmetry generated by the Stückelberg procedure. Even
after the Weyl rescaling, the tensor fµν , the vector aµ
and the scalar φ mix with each other at the quadratic
level (so that they cannot be used as such to describe in-
dependently propagating degrees of freedom). In the fol-
lowing we show how the last two problems can be solved
together by choosing ’t Hooft–Feynman-like gauge fixing
terms.
At quadratic order in fµν , aµ, φ the action (9) is com-

puted using (B.3) and the second order expansion of the
matrixL−1 given in (C.6). The result takes the rather com-
plicated form

S2 =
1

2
M2P

∫
d4x

{
fµν
[
f,µν +�fµν−f

α
µ,αν

−fαν,αµ+ηµν
(
fαβαβ,−�f

)]

+m2g

[
f2−fµνfµν+f

µν (∂µaν +∂νaµ)−2f∂
µaµ

−
1

4
FµνF

µν +2fµν∂µ∂νφ−2f�φ

]}
. (15)

The sign of the kinetic term of the vector aµ is the standard
one (had the sign of the mass term in (2) been opposite, aµ
would have been a ghost). The last two terms on the second
line of (15) are the only two in which the scalar φ appears,
and are not regular kinetic terms for a scalar. Following [16]

we perform the linearized Weyl rescaling

fµν = f̂µν −
1

2
m2gηµνφ (16)

of the graviton, to obtain a regular kinetic term for the
scalar φ. The quadratic action (15) becomes

S2 =
1

2
M2P

∫
d4x

{
f̂µν
[
f̂,µν +�f̂µν− f̂

α
µ,αν

− f̂αν,αµ+ηµν
(
f̂αβαβ,−�f̂

)]

+m2g

[
f̂2− f̂µν f̂µν

]

+m2g

[
f̂µν (∂µaν+∂νaµ)−2f̂∂

µaµ−
1

4
FµνF

µν

+3m2gφ

([
1

2
�+m2g

]
φ+∂µaµ− f̂

)]}
.

(17)

Even though we now have obtained a regular kinetic term
for the scalar φ, this action is still rather complicated and
contains quadratic interactions between the three fields
fµν , aµ, and φ.
In addition, this action (17) is invariant under the (lin-

earized) general coordinate transformations and a U(1)
gauge symmetry

δf̂µν =
1

2
(εµ,ν + εν,µ)−

1

2
m2gηµνψ ,

δaµ = εµ+∂µψ ,

δφ=−ψ . (18)

These gauge symmetries can be fixed by using the following
gauge fixing functionals:

GCC : Θµ = f̂µν ,µ−
1

2
f̂ ,µ−

1

2
m2ga

µ ,

U(1) : Θ = aµ,
µ−f̂ +3m2gφ . (19)

Indeed, under the combined gauge transformations (18)
these functionals transform as

δΘµ =
1

2

(
�−m2g

)
εµ , δΘ =

(
�−m2g

)
ψ . (20)

Note that at this order Θµ only transforms under general
coordinate transformations, while Θ only under the U(1)
symmetry. This shows that by suitable gauge transform-
ations these gauge fixing functionals can be made equal to
any prescribed functions. When one performs an analysis
at the level of equations of motions, it is most convenient
to simply set both functionals Θµ and Θ to zero. How-
ever, since in this section the aim is to obtain simple forms
for the propagators, we employ the gauge fixing function-
als (19) to define the gauge fixing action

Sgf =−M
2
P

∫
d4x

{
ΘµΘµ+

1

4
Θ2
}
. (21)

The use of these gauge fixing functionals can be viewed
as a generalization of the ’t Hooft Rξ gauges in sponta-
neously broken gauge theories. In principle, we can allow
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for arbitrary normalizations in front of each of the terms
in (19): as long as they are suitably chosen, the tensor, vec-
tor and scalar modes remain decoupled at the quadratic
level. However, in this “Feynman” gauge, the gauge fixed
action reduces to the simplest form

S′2 =
M2P
2

∫
d4x

{
f̂µν
(
�−m2g

)(
f̂µν −

1

2
ηµν f̂

)

+
1

2
m2gaµ

(
�−m2g

)
aµ+

3

2
m4gφ

(
�−m2g

)
φ

}
.

(22)

Hence in the gauge defined by (21) the different spin states
fµν , aµ and φ are decoupled, and all have the samemass. In
this gauge all components of these fields are dynamical.
This action is very convenient: it is immediate from (22)

that the field redefinitions

f̂µν =
1

MP
f̂cµν , aµ =

√
2
1

mgMP
acµ , φ=

√
2

3

1

m2gMP
φc ,

(23)

normalizes the fields canonically. Also the propagators for
the graviton∆µν ρσ, the vector field ∆µ ν and the scalar ∆
become very simple

∆αβρσ =
1

2
(ηαρηβσ+ηασηβρ−ηαβηρσ)∆,

∆µν = ηµν∆,

∆=
i

p2+m2g
. (24)

These propagators can be obtained from massless propa-
gators in the Feynman gauge by the straightforward sub-
stitution: p2→ p2+m2g. Even though the determination of
the propagators here was performed in the vielbein formu-
lation, it is obvious that it extends immediately to metric
perturbations hµν as well, since at the linearized level one
simply has hµν = 2fµν . Thus, this computation provides
the gauge fixing, which was not explicitly given in [16].

Table 1. This table considers all possible interactions that give rise to four-point scatterings that becomes strong
at scale Λ3 or below, using canonically rescaled Stückelberg fields (23). Such scatterings either arise directly from
single four-point functions, (a), or by combining two three-point functions, (b), with a scalar, vector or graviton
propagator in between the two vertices

(a)
4 point scale

(∂2φ)4 Λ4
(∂2φ)3(∂a) Λ3 12
(∂2φ)2(∂a)2 Λ3
(∂2φ)3 f Λ3

(b)
3 point 3 point scale 3 point 3 point scale

(∂2φ)3 (∂2φ)3 Λ5 (∂2φ)2(∂a) (∂2φ)2(∂a) Λ4
(∂2φ)3 (∂2φ)2(∂a) Λ4 12

(∂2φ)2(∂a) (∂2φ)(∂a)2 Λ3 12
(∂2φ)3 (∂2φ)(∂a)2 Λ4 (∂2φ)2(∂a) (∂2φ)2f Λ3 12
(∂2φ)3 (∂2φ)2f Λ4 (∂2φ)2(∂a) (∂a)3 Λ3
(∂2φ)3 (∂a)3 Λ3 12

(∂2φ)2(∂a) (∂2φ)(∂a)f Λ3

(∂2φ)3 (∂2φ)(∂a)f Λ3 12
(∂2φ)2f (∂2φ)2f Λ3

(∂2φ)3 (∂a)2f Λ3 (∂2φ)2f (∂2φ)(∂a)2 Λ3
(∂2φ)3 (∂2φ)f2 Λ3 (∂2φ)(∂a)2 (∂2φ)(∂a)2 Λ3

5 Dominant interactions at high energies

After the discussion of the quadratic action and propaga-
tors, we now turn to the interactions of this massive grav-
ity theory. The interactions of any massive gravity theory
are rather involved, because there are many of them, and
they all possess rather complicated tensorial structures.
Moreover, the interactions have a polynomial momentum
dependence, and become nonperturbative at some “large”
energy scale (in this context, “large” is defined with re-
spect to the gravitonmass). Therefore it is useful to classify
which interactions are the dominant ones at high energies.
As we reviewed in Sect. 3, in the Stückelberg formalism

the vector aµ enters in the “pion” field with one deriva-
tive, while the scalar φ with two derivatives. Therefore,
barring cancellations, the scalar couplings will be in gen-
eral the largest at high energies. As was noted in [16], the
φφ→ φφ scattering generally becomes strong at the scale
Λ5 = (m

4
gMP)

1/5. This scale falls into the regular pattern
of scales defined by

Λp =
(
mp−1g MP

)1/p
, (25)

where p can be integer or half integer (notice that Λp is
a decreasing function of p). All interactions that become
strong at scale Λ3 or below are grouped in Table 1. In par-
ticular, the scale Λ5 appears in φφ→ φφ scattering by
combining two three-scalar interactions. It was also shown
in [16] that the scale at which this scattering becomes
strong can at most be raised to Λ3. For a generic model
of massive gravity, the authors of this reference sketched
a procedure to obtain a suitable set of counter terms. We
show that the model we are considering automatically sat-
isfies this property.
To give a detailed discussion, we divide the presentation

in three subsections. The first one proves that our model
does not have any interactions with either only scalars or at
most one vector. In the second subsection we show that all
tree level processes become strong at a scale that is greater
than or equal to Λ3. In the final subsection we explicitly
compute φφ→ φφ scattering, as an example, and we show
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that it is possible to extend the model such that this ampli-
tude vanishes altogether.

5.1 Absence of interactions with only scalars
or at most one vector

In the next two subsections we want to show that our the-
ory does not become strong below the scale Λ3. Here we
prove that the most dangerous interactions, which have
the schematic forms (∂2φ)n and (∂2φ)n(∂a), are all absent
in our model. In these subsections we consider the scalar
interactions beforeWeyl rescaling: the additional scalar in-
teractions introduced by the Weyl rescaling will have an
additional factorm2g from (16), and they therefore have the
same strength as tensor interactions. The interaction term
of (9) can be written as

∆Sst =
3

2
m2gM

2
P

∫
d4x
〈
(e−Π)2 (e+Π)2

〉
, (26)

where we have introduced the short-hand notation

Πµa =
∂yν

∂xµ
ηνb
(
L−1
)bc
ηca , (27)

where yν is expressed by (14) in terms of aµ and φ. In the
following, it is often useful to be able to resort to matrix no-
tation to suppress the indices. Aside from the Minkowski
metric η, its perturbation f and the Lorentz transform-
ation L (which are matrices by definition), we encode the
derivatives of y into the matrices

π =

(
∂y

∂x
− lI

)
η = Φ+

1

2

(
A+AT

)
−
1

2
F , (28)

where Φµν = φ,µν ,Aµν = aµ,ν and Fµν = ∂µaν−∂νaµ is the
U(1) field strength. (For us π is defined strictly by the ma-
trix equation (28); our definition differs slightly from the
conventions used in [16].)
Now let us first consider interactions with only scalar

fields. To single out from (26) the interactions (∂2φ)n, we
can simply replaceΠµν → ηµν +Φµν and set both Lµν and
eµν equal to the Minkowski metric ηµν (ignoring the vector
and tensor contributions). We can take Lµν = ηµν because
in this case e′ is automatically symmetric. This gives

∆Sst ⊃ 3m
2
gM

2
P

∫
d4x
〈
4η2Φ2+4ηΦ3+Φ4

〉
, (29)

where we have employed the matrix notation defined
in (28). All these terms vanish upon partial integration. For
example, for the first term we obtain

∫
d4x
〈
4η2Φ2

〉
=−

∫
d4xεabcdεab

ρσφ,cρφ,dσ

=

∫
d4xεabcdεab

ρσφ,ρφ,cdσ = 0 ,

(30)

where we have used the definition (3) and the anti-
symmetry of the εabcd tensor. Similar arguments also ap-
ply to the other two terms. Hence, all the interactions of

the form (∂2φ)n vanish. Equivalently this result can be
obtained by going to momentum space and realizing that
then all matrices are of the form (B.5), for which the an-
gular bracket vanishes as is proven in Appendix B. As
anticipated below (7), this shows that all these pure scalar
higher derivative interactions naturally vanish, which was
the motivation in [25] to consider these combinations.
Also the interactions of the schematic form (∂2φ)n(∂a)

vanish. To see this, we employ the matrix notation (28),
and we again set e = η in the interaction term (26). We
first observe that all the terms that are linear in F vanish.
This is due to the fact that all the other tensorial struc-
tures that wouldmultiply F , namely η orΦ, are symmetric,
while F itself is antisymmetric. Therefore, we can set both
fµν and Fµν to zero, without losing the term that we are
looking for. Doing so, we have a symmetric pion matrix,
π = Φ+ 12A+

1
2A
T. Once we insert it in (28), we obtain

a symmetric e′ vielbein already; therefore L= η. The ex-
pression we are looking for can be found by evaluating (26)
for Fµν = fµν = 0, Lµν = ηµν . This results in an interaction
action that is again of the form (29) upon making the re-
placement Φ→ Φ+ 12A+

1
2A
T. The final step is to single

out from this expression the terms that are linear in the
vector field. It is clear that they are of the form 〈AΦnη3−n〉.
Using a partial integration procedure similar to that of the
terms 〈Φnη4−n〉 presented above (or again using (B.5) in
momentum space), it is easy to verify that also such terms
vanish.

5.2 All interactions become strong at scale Λ3
or above

We now show that there are no scattering amplitudes that
become strong at a smaller scale than Λ3. We only ana-
lyze the theory at the classical level; in particular, we do
not consider loop graphs. We first consider the S-matrix
elements that correspond to diagrams that contain a single
vertex Vng ,na,nφ , with ng tensor, na vector and nφ scalar

external legs.2 Taking into account that at a vertex there is
momentum conservation encoded in a single overall four di-
mensional momentum delta function, which scales as 1/E4

(where E is the energy in the scattering), we see that such
vertex scales as

Vng,na,nφ ∼
m2gM

2
P

E4

(
1

MP

)ng ( E

mgMP

)na ( E2

m2gMP

)nφ
.

(31)

where the E in parentheses arise from derivatives (scalars
enter in the Stückelberg formalism with two derivatives,
while vectors enter with one), and the denominators arise
from the canonical normalization. To understand at which
energy E such a process becomes strong we need to com-
pute the scaling of the corresponding S-matrix element
Sng,na,nφ , in which we integrate over all possible external

2 We would like to remind the reader that, for reasons ex-
plained in the previous subsection, we count the scalar and
tensor legs before Weyl rescaling.
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momenta. Because the external particles are all on-shell,
we integrate over

∫
d4piδ(p

2
i −m

2
i ) =

∫
d3pi
2Eipi

∼E2 , (32)

where in the last step we used that in the high energy
regime we are considering E	mg. Hence the correspond-
ing S-matrix element scales like

S1/2ng,na,nφ ∼

(
mgMP

E2

)2(
E

MP

)ng

×

(
E2

mgMP

)na ( E3

m2gMP

)nφ
. (33)

(For notational convenience we have taken the square root
of the S-matrix element; the interaction becomes strong
when the matrix element, or its square root, exceed one.)
Now we analyze the strength of general interactions

with a single vertex. Because we are interested in scatter-
ings, the total number of external legs ng+na+nφ ≥ 3. In
total we can distinguish five different cases. (i) na = ng = 0;
(ii) na = nφ = 0; (iii) ng, nφ ≥ 1; (iv) na = 1, and finally (v)
na ≥ 2. We have shown in the previous subsection that the
model does not have vertices with only scalars, hence there
are no processes that correspond to the first case, (i). The
second case, (ii), involves interactions among only tensors.
The corresponding S-matrix elements

S
1/2
ng,na=nφ=0

∼

(
mg

MP

)2(
E

MP

)ng−4
(34)

are bounded from above for ng ≤ 4 and therefore do not
lead to strong coupling behavior. For ng ≥ 5 these interac-
tions become strong at an energy scale that is greater than
the Planck scale MP. Next, let us consider interactions of
type (iii) that involve at least one scalar and one graviton.
By rewriting the general expression (33) as

S
1/2
ng≥1,na,nφ≥1

∼

(
E

Λ1

)ng−1( E
Λ2

)2na ( E
Λ3

)3(nφ−1)
,

(35)

we conclude that these interactions are still weak at energy
scales lower than Λ3, because all the exponents of the fac-
tors are nonnegative, and the scales Λ3 < Λ2 < Λ1 =MP
are ordered hierarchically; see their definitions (25). Let
us turn to interactions of type (iv), with a single vector,
na = 1. From the previous subsection we know that if there
are no tensors, ng = 0, the amplitude vanishes. The situ-
ation with at least one tensor and one scalar constitutes
a special case of (iii). The remaining possibility of type (iv),
no scalars and ng ≥ 2, becomes strong above the Planck
scale MP (analogously to case (ii)). This is clear when we
rewrite

S
1/2
ng≥2,na=1,nφ=0

∼

(
mg

MP

)2(
E

MP

)ng−2
. (36)

Finally, also case (v) remains weak at all scales lower than
Λ3, because we can write

S
1/2
ng,na≥2,nφ

∼

(
E

Λ1

)ng ( E
Λ2

)2(na−2)( E
Λ3

)3nφ
.

(37)

Hence, we showed that, in this model, all n-leg interac-
tions with a single vertex become strong at the scale Λ3 or
higher.
Finally, let us discuss tree diagrams that contain more

than one vertex. Such diagrams can be obtained recur-
sively by combining tree level diagrams with less vertices
inside. Whenever we combine two such diagrams, we loose
two external lines and hence two factors of E2 in the S-
matrix. At the same time we gain a factor E2 in the ampli-
tude, since we have an additional momentum integral over
a propagator:

∫
d4p/p2 ∼E2. (Because we consider tree di-

agrams all momenta inside a given diagram are fixed by
momentum conservation.) Therefore, the scaling of the S-
matrix element of the combined diagram is the same as of
the original two disconnected diagrams.We can repeat this
argument recursively, as we split any tree level diagram in
a series of single vertex diagrams. Since we already saw
that all single vertex scatterings become strong at least at
the scale Λ3, this argument shows that this is the case for
any tree level scatterings.3

5.3 Can the φφ→ φφ scattering amplitude vanish?

The interaction vertices given in Sect. 5.1 can be em-
ployed to obtain several four-point amplitudes that (if
not vanishing) all become strong at the scale Λ3. These
amplitudes correspond to the scattering processes φφ→
φφ, φf̂ → φf̂ , aφ→ aφ, aa→ aa, and φf̂ → a a, plus
the crossed processes. As an example, we compute the
φφ→ φφ scattering at tree level. In particular, we want
to investigate whether it is possible to have a model
where the full leading φφ→ φφ scattering vanishes at tree
level.
As will become clear below, the amplitude for φφ→ φφ

does not vanish in the model (2). Therefore, we consider
the slightly generalized interaction term

∆Sgen =
6m2gM

2
P

4+α+β

∫
d4x

×
〈
(e−η)2

(
e2+(2+α)ηe+(1+β)η2

)〉
,

(38)

where the real parameters α and β are arbitrary. The nor-
malization factor 4+α+β in (38) is chosen such that m2g
still represents the graviton mass. Note that for α= β = 0

3 All the arguments in this section ignore any possible in-
terference between different diagrams. Interferences can only
soften the scattering amplitudes, so they do not affect the con-
clusion that the interactions are weak at energies smaller than
Λ3.
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we recover the terms in (2), which is symmetric under re-
flection of the vielbein. (Also in this more general model,
the interactions that can potentially become strong at
a scale lower than Λ3 vanish for the same reasons we have
discussed in the previous subsections.) To be able to di-
rectly compare various scattering amplitudes, we use the
canonically normalized fields defined in (23). The leading
interactions of the action (38) can be expressed as

∆Lgen ⊃−
1
√
6

1

m2gMP

{
2+3b

2
[F 2c Φc]−

1+3b

4
[FcFc]�φc

}

+
1

3

1+3b

m2gMP

{
1
√
6
φc
(
(�φc)

2− [Φ2c ]
)
−
1

2
[f̂c](�φc)

2+[f̂cΦ
2
c ]

−
1

2
[f̂c][Φ

2
c ]− [f̂cΦc]�φc

}

+
a−2b

m4gM
2
P

{
1

3
√
6

(
(�φc)

3[f̂c]−3�φc[f̂c][Φ
2
c ]

−3(�φc)
2[Φcf̂c]+3[Φ

2
c][Φcf̂c]+2[f̂c] [Φ

3
c ]

−6[f̂cΦ
3
c ]+6�φc[f̂cΦ

2
c ]
)

+
1

8

(
[Φ2c ][F

2
c ]− (�φc)

2[Fc]
2
)

−
1

18
φc
(
(�φc)

3−3�φc[Φ
2
c ]+2[Φ

3
c]
)}

+
1

4

1

m4gM
2
P

{(
2

3
+5b−2a

)
[Φ2cF

2
c ]

+

(
2

3
+3b−a

)
[ΦcFcΦcFc]

−

(
1

3
+5b−2a

)
�φc[ΦcF

2
c ]

}
, (39)

where we have defined the parameters

a=
α

4+α+β
, b=

β

4+α+β
. (40)

To obtain these interactions we first performed
a Stückelberg transformation to the action (38); we then
expanded it up to first order in f and fourth order in π, and
we finally performed the linearized Weyl rescaling. To sin-
gle out only the leading terms, we then substituted π =A+
Φ and kept only those terms with the highest power of
Φ, since they contain the greatest number of derivatives.
In this way, we found the expansion (C.8) given in Ap-
pendix C for Π defined in (27). Finally we worked out the

Fig. 1. This diagram displays the three diagrams that contribute to the four scalar scattering at the scale Λ3, which result
from (39). In the first diagram the scalar φ is exchanged, while in the second diagram the graviton f̂µν is the mediating particle.
The last diagram results from the four-point interactions of scalars

brackets 〈. . . 〉 in terms of traces [. . . ], using the identities
of Appendix B.
This fourth order leading expression is rather involved

for generic values of a and b. However, notice that if a= 2b
the entire term with the third and braces of (39) vanish.
In particular, there are no pure scalar interactions any-
more. This is also the case for the model (2) with a= b= 0,
which we are mostly concerned with in this paper. How-
ever, if in addition b=−1/3, also the second braced term
and the very last term on the last line vanishes, and only
three different interactions survive: one two-scalar vector
interaction and two two-scalar two-vector interactions. In
particular there are no interactions with tensors left. Hence
the only possible four-point scatterings involve two scalars
and two vectors.
We compute the leading tree level φφ→ φφ scattering,

which becomes strong at the scale Λ3 for generic values of
a and b, using the leading expansion (39). The process is
described by the three diagrams shown in Fig. 1. The com-
putation of these diagrams is a straightforward exercise in
Feynman graph computations and therefore only the result
is given here. We neglect the graviton mass against the ex-
ternal and internal momenta of the scattering. In terms of
the standard Mandelstam variables s, t and u, the ampli-
tude reads

M(φφ→ φφ) =

[
−
(1+3b)

2

8
+
(1+3b)

2

12
+
a−2b

3

]
stu

m4gM
2
P

.

(41)

The three terms correspond to the diagrams a, b and c
given in Fig. 1, respectively. The total amplitude expressed
in terms of the center of mass energy E equals

M(φφ→ φφ) =−
2

3

[
8(2b−a)+ (1+3 b)2

] E6

M2Pm
4
g

sin2 θ ,

(42)

where θ defines the angle between the momenta of an in-
going and an outgoing particle in the center of mass frame.
We see that, besides the special point a= 2b=−2/3, there
is a whole parabola a(b) = 2b+(1+3b)2/8 such that the
full tree level φφ→ φφ scattering vanishes at the scale Λ3.
We emphasize that this four-point scalar scattering alone is
not sufficient to understand the strong coupling dynamics
of massive gravity theories and of our model in particular.
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6 Conclusions

The model of massive gravity considered in this paper is
standard general relativity with a cosmological constant
and a Fierz–Pauli mass term for the vielbein. By requiring
a reflection symmetry of the vielbein, eµa→−eµa, this the-
ory, like standard Fierz–Pauli massive gravity, is described
by only two parameters: the Planck scale and the graviton
mass. As such it constitutes one of the simplest nonlinear
extensions of massive gravity theories. This model can be
obtained from a bi-gravity theory with an extremely simple
interaction term between the two sectors. The bi-gravity
theory contains a massless and a massive graviton state,
and it admits a limit in which the massless graviton decou-
ples [18], as we show in Appendix A. In the present work we
studied the model of a single massive graviton that emerges
in this limit.
We have investigated whether the simplicity of the

model has some physical implications, or only has aes-
thetic merit. To do so, we studied this model at the
nonlinear level (since, at the linear level, it is equal to
the standard Fierz–Pauli model). As the present model
is a special type of massive gravity, it shares the prob-
lems that massive gravity theories have in general. The
main one is that they are plagued by ghosts at the non-
linear level [23, 24], which can never be avoided at the
quartic order in the perturbations [25]. A related diffi-
culty is that the self-interactions of a massive graviton
become strong at macroscopic distances from a source [21].
In general, the scattering becomes strong at the energy
scale Λ5 ≡

(
m4gMP

)1/5
. However, by adding to the start-

ing theory a set of suitable nonlinear interactions, this
scale can be raised up to Λ3 ≡

(
m2gMP

)1/3
at most [16].

Even though our theory does not solve these essential
problems of massive gravity theory, it provides a mini-
mal model that has self-interactions that become strong
at the highest possible scale Λ3. Therefore, the model here
discussed may be considered as a prototype of massive
gravity, since, in addition to its minimal formulation, has
the best behavior that we can hope to obtain for such
theories.
We conclude with a note on the use of the vielbein

rather than the metric formulation. In (7), we wrote the
(exact) Lagrangian of the model in terms of metric pertur-
bations. Reference [25] already showed that special combi-
nations of terms have the consequence of removing from
the theory the self-interactions that involve only the scalar
polarization of the graviton, before Weyl rescaling (such
interactions – if present – would lower the strong scale
below Λ3). However, what in the metric computation ap-
pears only as a computational result (obtained by allow-
ing for arbitrary coefficients, and then finding which com-
bination eliminates the unwanted terms), in the vielbein
formulation corresponds to one of the simplest combi-
nation of a Fierz–Pauli mass for vielbein perturbations
and a cosmological constant. This suggests that, despite
that it is very rarely considered, the vielbein approach
may be more suitable for the study of massive gravity,
and, hopefully, for finding the improvements that it still
requires.
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tially supported by DOE grant DE-FG02-94ER-40823, and by
a grant from the Office of the Dean of the Graduate School at
the University of Minnesota.

Appendix A: Derivation from a bi-gravity
theory

In this appendix we explain how the massive gravity model
discussed in this paper can be derived from the bi-gravity
theory discussed in [18]. One starts from the two metrics
g̃+µν and g̃−µν , which we rewrite in terms of two vielbeins
ẽ+µm and ẽ−µm, using the standard definition

g̃±µν = ẽ±µmη
mnẽ±νn . (A.1)

The action for the model is

Sbi =

∫
d4x

{√
−g̃+

(
1

2
M2+R̃++Λ+

)

+
√
−g̃−

(
1

2
M2−R̃−+Λ−

)
−2Λ0

〈
ẽ2+ẽ

2
−

〉}
.

(A.2)

The two gravitational sectors are characterized by the two
“Planck masses” M± and the cosmological constants Λ0
and Λ±.

4 The double covariance of the model is broken by
the last term.
Let us now proceed to the study of the spectrum of the

model for the Minkowski background. We set

e±µν = ηµν +f±µν , (A.3)

and we expand the action (A.2) at the quadratic level in the
perturbations f±µν . The resulting action is not diagonal in
terms of these two modes; however, it can be diagonalized
through the redefinition
(
f+,µν
f−,µν

)
=
1

r+ 1
r

(
1− 1
r

1 r

)(
f0,µν
fµν

)
, r =

M+

M−
c2 .

(A.4)

Themode f0µν ismassless,while fµν has aFierz–Paulimass
mg, which is related to the cosmological constantΛ0 by

5

Λ0 =
3

2
m2gM

2
P , M

2
P =M+M−

(
r+
1

r

)−1
. (A.5)

The Planck massMP (as obtained from the kinetic terms)
is found to be identical for both gravitons. The graviton
mass mg vanishes for Λ0 = 0, as a consequence of the en-
larged covariance.
The massless graviton decouples in the limit of either

M+→∞ (with finiteM−), orM−→∞ (with finiteM+).

4 As we see below Λ0 needs to be positive to avoid a tachyonic
mass for the graviton.
5 We correct a typo in the definition of the mass appearing
in [18].
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Both the Planck and graviton mass appearing in (A.5) are
finite in these limits, so that the quadratic actions for the
massless and massive modes remain finite. However, all the
nonlinear interactions involving the massless mode f0µν
vanish in either limit. For instance, in the first limit, we have
at leading order f+ ∝ f0/M+, f and f− ∝ f0/M+, f/M2+
(suppressing for shortness the tensorial indices). There-
fore, writing the original action (A.2) in terms of f and f0,
we see that any term containing the massless mode is sup-
pressed by a negative power ofM+, and therefore vanishes
as M+→∞. The only exception is the quadratic kinetic
term from the+ sector, which results in a finite kinetic term
for themassless gravitonwith thePlanckmass (A.5). In this
limit, the massive graviton is identified with f−, and a the-
ory of a single massive graviton is obtained by coupling all
matter fields in the − sector. Obviously, an analogous situ-
ation is obtained in the other limit.
To obtain the model of this paper, we study the theory

in either of the two (equivalent) limits by ignoring the de-
coupled massless graviton.We also restrict our attention to
the Minkowski background. For instance, in theM+→∞
limit, this gives ẽ+µν = cηµν , ẽ−µν = c

−1eµν = c
−1(ηµν +

fµν), and the action (A.2) reduces to (2).

Appendix B: Properties of 〈ABCD〉

In this appendix we collect various helpful properties of
the angular bracket 〈ABCD〉 defined in (3). First of all the
ordering of the matrices A, . . .,D is irrelevant in this ex-
pression, because of the two Levi-Civita tensors in its defin-
ition. For the same reason, this product is invariant under
the simultaneous transposition of all four matrices. As we
remarked in the main text, it generalizes the notion of a de-
terminant, in the sense that 〈A4〉= det(A) = |A|. However,
〈A2B2〉 cannot be written as a determinant. The prop-
erty of a determinant that the determinant of a product
of matrices is equal to the product of their determinants
generalizes to

〈(aAb)(aBb)(aCb)(aDb)〉= |a|〈ABCD〉|b| , (B.1)

for any matrices a, b, A,B,C,D.
The angular bracket can be rewritten in terms of traces

[A] = ηabAba; the resulting expression is rather involved:

〈ABCD〉 =
1

24
([A][B][C][D]− [A][B][CD]− [A][D][BC]

− [B][D][AC]− [AB][C][D]− [A][BD][C]− [AD][B][C]

+ [AB][CD]+ [AC][BD]+ [AD][BC]+ [A][BCD]

+ [A][BDC]+ [B][ADC]+ [B][ACD]+ [C][ABD]

+ [C][ADB]+ [D][ABC]+ [D][ACB]− [ABCD]

−[ADBC]− [ACDB]− [ABDC]− [ACBD]− [ADCB]) .
(B.2)

However, when some of its entries are equal to the
Minkowski metric η, its expression simplifies considerably:

〈η4〉= 1 , 〈η3A〉=
1

4
[A] ,

〈η2A B〉=
1

12
([A][B]− [AB])

〈ηABC〉 =
1

24
([A][B][C]− [A][BC]− [B][AC]

−[C][AB]+ [ABC]+ [ACB]) . (B.3)

Also, we can use (B.2) to express the determinant of a ma-
trix in terms of traces:

|A|= 〈A4〉

=
1

24

(
[A]4−6[A]2[A2]+3[A2]2+8[A][A3]−6[A4]

)
.

(B.4)

Finally, if the matrices A, . . . ,D are formed from five
arbitrary vectors p, q, r, s and t,

Aαa = pαqa , Bβb = pβrb , Cγc = pγsc , Dδd = pδtd ,
(B.5)

then, by the antisymmetry with respect to the exchange of
any two of the pα, pβ, pγ , pδ inside the bracket expression,
we find 〈ABCD〉 = 〈ηABC〉 = 〈η2AB〉 = 0.

Appendix C: Perturbative expansions

This appendix is devoted to some technical details of the
perturbative expansions, which we use in the main part of
the text to determine the interactions of the massive grav-
ity theory in the Stückelberg formulation. The interactions
are encoded in the expression (26), where the matrix Π is
defined in (27). The first step for the computation ofΠ is to
determine L from (13). Since the interactions of the gravi-
ton are determined by an expansion around the Minkowski
background, we consider the infinitesimal general coordi-
nate transformation

lI+ εη−1 =
∂x

∂y
eη−1 , (C.1)

and we expand L=
∑
n Ln in a power series in ε and its

transpose (more accurately, Ln is a sum of monomials of
degree n, where each of the monomials is a product of ε and
its transpose). Using this expansion, (13) can be rewritten
as two recursion relations

Ln+1−L
T
n+1 = L

T
nη
−1εT− εη−1Ln ,

Ln+1+L
T
n+1 =−

n∑
k=1

Lkη
−1LTn−k+1 , (C.2)

which, altogether, determine L order by order in the ex-
pansion. From this condition, and from taking L= η when
the change of coordinate is trivial (ε= 0), we find the recur-
sive solution

L0 = η ,

Ln+1 =
1

2

(
LTnη

−1εT− ε η−1Ln−
n∑
k=1

Lkη
−1LTn−k+1

)
,

(C.3)
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where the last term in parentheses must be evaluated only
for n > 1. This determines L uniquely; up to cubic order,
the explicit solution reads

L= η−
1

2

(
ε− εT

)
+
1

8

(
3ε2− εεT− εTε− (εT )2

)

+
1

16

(
ε2εT+ ε εTε+ ε(εT )2+ εTε2− εTε εT

+(εT )2ε+(εT )3−5ε3
)
+ . . . (C.4)

In this expression the presence of η−1 between any two
consecutive ε or εT is understood. We can now use this
information to determine the matrix Π = η+Π1+Π2+
Π3+ . . . , see (27), where the subscript indicates the order
in which the graviton f (before Weyl rescaling) and the
pion field π appear in this expression. In fact, in this work
we only need the expansion up to third order: we must eval-
uate the interaction term (26) up to quartic order in the
fields, since we are at most interested in four-point interac-
tion vertices. However, since one of the two factors entering
in (26) does not have a background part, it is sufficient to
expand Π at cubic order in the fluctuations.
From the definition (27), we see that we need to invertL

up to cubic order. The inversion up to cubic order in ε is ob-
tained in a straightforward manner from (C.4). However,
one has then to realize that ε itself is an expansion series in
terms of the fields that are contained in f and π. Therefore,
we must now expand ε at cubic order in the physical fields.
This is done expanding the definition of ε, (C.1), where (in
matrix notation) e= η+f , while π enters in the inverse of
∂x/∂y as written in (28). The expansion up to cubic order
for ε reads

ε= f −π−πη−1(f −π)+πη−1πη−1(f −π)+ . . .
(C.5)

and, finally, L−1 is found to be

L−1 = η−1+
1

2

(
πT−π

)
+
1

8

(
3π2− (πT)2−ππT−πTπ

)

+
1

4

(
fπT+fπ−πf −πTf

)

+
1

16

(
(πT)3−5π3+π(πT)2+π2πT+ππTπ

−πTππT+πTπ2+(πT)2π
)

+
1

8

(
2π2f −f(πT)2−πfπ+πTfπT−πfπT

−fπTπ+πTfπ−fπ2+fππT
)

+
1

8

(
πf2−f2πT−f2π+πTf2

)
+ . . . . (C.6)

In both this expression and the next ones we have sup-
pressed writing the matrix η−1 between consecutive fac-
tors. Inserting this expression in (27), we obtain

Π = η+
1

2

(
π+πT

)
+
1

8

(
3ππT−π2−πTπ− (πT)2

)

+
1

4

(
fπT+fπ−πf−πTf

)

+
1

16

(
π3+(πT)3−π(πT)2−π2πT−ππTπ

−πTππT+πTπ2+(πT)2π
)

+
1

8

(
πfπ−f(πT)2+πTfπT+πfπT−fπTπ

+πTfπ−fπ2+fππT−2ππTf
)

+
1

8

(
πf2−f2πT−f2π+πTf2

)
+ . . . , (C.7)

which we finally insert in the interaction term (26). This
gives the interactions between the various polarizations of
the graviton for the model we are discussing.
Equation (39) of the main text included the dominant

interaction terms up to quartic order. These leading terms
are obtained from the general expressions just given, by
substituting (28) in the expression above, and only keep-
ing terms with at most a single f or two A’s. (All other
terms have fewer derivatives, and so do not control the high
energy limit of the model.) This gives

Π = η+Φ+
1

2

(
A+AT

)
+
1

4
Φ(F −2f)

−
1

4
(F −2f)Φ+

1

8

(
3A AT−A2− (AT)2−ATA

)

+
1

8

(
FΦ2−Φ2F +FATΦ−ΦA F +ATΦA−AΦAT

+4ΦfΦ−2fΦ2−2Φ2f
)
. (C.8)

Notice that many possible structures are absent. In par-
ticular all terms with higher powers of Φ and no other fields
have canceled. The reason for this is that in (C.7) terms
that could give such terms have coefficients that add up to
zero. For example, substituting π→ Φ in the combination
(3ππT−π2− (πT)2−πTπ) gives zero because Φ is sym-
metric. This completes the development of the expansions
of the various functions that appear in the main text to the
order required there.

Appendix D: Exact expressions

In addition to the perturbative expansions presented in the
previous appendix, it is also possible to derive closed ex-
act expressions. Such results can be obtained as follows: by
multiplying the relations

∂x

∂y
eη−1 = e′L−1 , η−1e

(
∂x

∂y

)T
= (LT)−1e′ ,

(D.1)

we can obtain an equation for η−1e′ of which we can take
the formal square root,

e′ = η

[
η−1
∂x

∂y
eη−1e

(
∂x

∂y

)T]1/2
. (D.2)
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Substituting this back into one of the equations (D.1), we
find

L= e

(
∂x

∂y

)T [
η−1
∂x

∂y
eη−1e

(
∂x

∂y

)T]−1/2
. (D.3)

This in turn results in

Π =
∂y

∂x

[
∂x

∂y
e η−1e

(
∂x

∂y

)T
η−1

]−1/2
∂x

∂y
e . (D.4)
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